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Abstract

An e�ective method is developed and used to investigate the elastic ®eld and electric ®eld of a rigid line in a
confocal elliptic piezoelectric inhomogeneity embedded in an in®nite piezoelectric medium. The matrix is subjected
to the remote antiplane shear and inplane electric ®eld. The analytical solution is obtained using the conformal

mapping and the theorem of analytic continuation. Speci®c solutions which are compared with existing ones are
provided. The characteristics of the elastic ®eld and electric ®eld singularities at the rigid line tip are analyzed and
the extension forces on the rigid line are derived. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

In studying the fracture of multi-phase piezoelectric materials with defects such as cracks, inclusions,
inhomogeneities, etc., it is important to evaluate the elastic ®eld and electric ®eld around defects. When
a rigid line is embedded in an elliptic piezoelectric inhomogeneity in an in®nite piezoelectric medium,
di�erences between the elastic, piezoelectric and dielectric constants of the elliptic inhomogeneity and
matrix can cause the stress and electric displacement singularity coe�cients and the corresponding
extension forces on the rigid line to be greater or less than those prevailing in a homogeneous
piezoelectric solid. Usually, the presence of such piezoelectric inhomogeneities plays an important role in
determining the mechanical and electric behaviors of these materials (Pak, 1992).

Parton (1976) analyzed the fracture problem of piezoelectric materials using the technique of the
integral equation. Deeg (1980) examined the e�ect of a dislocation, a crack and an inclusion upon the
coupled response of piezoelectric solids. Sosa and Pak (1990) investigated the crack-tip
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electromechanical ®elds of piezoelectric solids within the realm of three-dimensional linear
piezoelectricity, while Pak (1992) analyzed a piezoelectric circular inclusion problem in an in®nite
piezoelectric matrix. With the extended eight-dimensional formalism developed by Lothe and Barnett
(1976), Kuo and Barnett (1991) and Suo et al. (1992) studied the singularities of interfacial cracks in
bonded anisotropic piezoelectric media. More recently, Zhang and Tong (1996) formulated the
mechanical and electric ®elds around an elliptic cylindrical cavity in a piezoelectric material under the
remote antiplane shear and inplane electric ®eld. Kogan et al. (1996) obtained the closed-form solutions
for the stress and induction ®elds of a spheroidal piezoelectric inclusion in an in®nite piezoelectric
matrix subjected to spatially homogeneous mechanical and electric loadings at in®nity. Lee and Jiang
(1996) gave an exact analysis of three-dimensional piezoelectric lamina by the state space approach.
Chung and Ting (1996) investigated the piezoelectric solid with an elliptic inclusion or hole using the
Stroh formalism. An extensive review concerning piezoelectric materials can be found in a recent paper
by Sosa and Khutoryansky (1996).

In the present paper, an e�ective method is developed and used to investigate the elastic ®eld and
electric ®eld of a rigid line in a confocal elliptic piezoelectric inhomogeneity embedded in an in®nite
piezoelectric medium. The matrix is subjected to the remote antiplane shear and inplane electric ®eld.
The proposed method is based upon the conformal mapping and the theorem of analytic continuation.
In Section 2, the basic problem is stated and the corresponding ®eld equations and continuity conditions
are outlined. In Section 3, the analytical solution for the present problem is presented according to the
Laurent theorem and the re¯ection principle across the circle. Speci®c solutions which are compared
with existing ones are provided. Section 4 analyzes and discusses the singularities of the stress and
electric displacement ®elds at the rigid line tip. Furthermore, the extension forces on the rigid line are
derived. Section 5 concludes this article.

Fig. 1. A rigid line in a confocal elliptic piezoelectric inhomogeneity.
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2. Statement of problem

As shown in Fig. 1, consider a rigid line in a confocal elliptic piezoelectric inhomogeneity embedded
in an in®nite piezoelectric matrix where the rigid line is in®nitely long in the direction perpendicular to
xy-plane. The inhomogeneity and matrix are assumed to have di�erent material properties, but they
have been poled along the direction perpendicular to xy-plane. The matrix, assumed to be in®nite in all
directions, is subjected to the far-®eld antiplane shear and inplane electric ®eld.

For this problem, the displacement w is coupled with the inplane electric ®elds Ex and Ey. They only
are the functions of coordinates x and y such as w � w�x, y�, Ex � Ex�x, y� and Ey � Ey�x, y�. Referring
to Pak (1990), we can write the ®eld equations in the absence of body forces and free charges as follows

Divergence equations:

@sxz
@x
� @syz

@y
� 0,

@Dx

@x
� @Dy

@y
� 0 �1�

Constitutive equations:

sxz � 2c44exz ÿ e15Ex, syz � 2c44eyz ÿ e15Ey

Dx � 2e15exz � k11Ex, Dy � 2e15eyz � k11Ey �2�
Gradient equations:

exz � 1

2

@w

@x
, eyz � 1

2

@w

@y
, Ex � ÿ@j

@x
, Ey � ÿ@j

@y
�3�

where �sxz, syz�, �exz, eyz�, w, �Dx, Dy�, �Ex, Ey� and j are the components of stress, strain, displacement,
electric displacement, electric ®eld and electric potential, respectively. c44, e15 and k11 are the
corresponding elastic, piezoelectric and dielectric constants which satisfy the relations c44 > 0 and
k11 > 0. Substituting eqns (2) and (3) into eqn (1) yields

c44r2w� e15r2j � 0, e15r2wÿ k11r2j � 0 �4�
where r2 is the two-dimensional Laplacian operator.

It is easy to show that eqn (4) can be satis®ed automatically if w and j are chosen as the real parts of
the analytical functions C�z� and F�z�. Thus, we have

w � 1

2c44

ÿ
C�z� �C�z�

�
, j � 1

2k11

ÿ
F�z� � F�z�

�
�5�

where z � x� iy is the complex variable and the overbar refers to the complex conjugate. Substituting
(5) into (2) and (3), we can get the expressions of stress, electric displacement and electric ®elds

sxz ÿ isyz � C 0�z� � e15
k11

F 0�z�

Dx ÿ iDy � e15
c44

C 0�z� ÿ F 0�z�

Ex ÿ iEy � ÿ 1

k11
F 0�z� �6�
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where prime denotes the derivatives with respect to variables. Utilizing eqn (6), the resultant force T and
the resultant normal component S of the electric displacement along any arc AB can be determined by
formulae

T �
�B
A

ÿ
sxz dyÿ syz dx

� � i

2

��
C�z� ÿC�z�

�B
A�

e15
k11

�
F�z� ÿ F�z�

�B
A

�

S �
�B
A

ÿ
Dx dyÿDy dx

� � i

2

�
e15
c44

�
C�z� ÿC�z�

�B
Aÿ
�
F�z� ÿ F�z�

�B
A

�
�7�

where �f �z��BA represents the change of function f(z ) from point A to point B along the arc.
For the present problem, as shown in Fig. 2, it is convenient to map region D2 of the z-plane into the

exterior region O2 of the unit circle G2�jzj � 1� in the z-plane and region D1 into the annular region O1

between G2 and the circle G1 of radius 1/R corresponding to the rigid line from ÿc to c in the z-plane by
the mapping function

z � o �z� � c

2

�
Rz� 1

Rz

�
, Rz � oÿ1�z� � z�

��������������
z2 ÿ c2
p

c
�8�

where

z � x� iZ � reiy, c � �a2 ÿ b2�1=2� a
ÿ
1ÿ w2

�1=2

R �
�
a� b

aÿ b

�1=2

�
�
1� w
1ÿ w

�1=2

with w � b=a �9�

According to the mapping function (8), eqns (5)±(7) can be rewritten in the z-plane as follows

w � 1

2c44

ÿ
C�z� �C�z�

�
,

j � 1

2k11

ÿ
F�z� � F�z�

�
; �10�

Fig. 2. A schematic of conformal mapping.
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sxz ÿ isyz � C 0�z�
o 0�z� �

e15
k11

F 0�z�
o 0�z� ,

Dx ÿ iDy � e15
c44

C 0�z�
o 0�z� ÿ

F 0�z�
o 0�z� ,

Ex ÿ iEy � ÿ 1

k11

F 0�z�
o 0�z� ; �11�

iT � 1

2

��
C�z� ÿC�z�

�B
A�

e15
k11

�
F�z� ÿ F�z�

�B
A

�
,

iS � 1

2

�
e15
c44

�
C�z� ÿC�z�

�B
Aÿ
�
F�z� ÿ F�z�

�B
A

�
�12�

where C�z� � C�o �z�� and F�z� � F�o �z��. Evidently, if the complex functions C�z� and F�z� in regions
O1 and O2 are determined, we can obtain the corresponding elastic ®eld and electric ®eld. For this
purpose, we ®rst give the continuity conditions along the interface which is assumed to be perfectly
bonded and the boundary conditions. The assumption of perfect bonding and that of no free charges
and forces along the interface between regions O1 and O2 imply the continuity of displacement, electric
potential, traction and normal component of the electric displacement on G2. These conditions can be
expressed as

m1
�
C1�z� �C1�z�

�
� C2�z� �C2�z�

m2
�
F1�z� � F1�z�

�
� F2�z� � F2�z� �13�

C1�z� ÿC1�z� � a1
�
F1�z� ÿ F1�z�

�
� C2�z� ÿC2�z� � a2

�
F2�z� ÿ F2�z�

�
b1
�
C1�z� ÿC1�z�

�
ÿ F1�z� � F1�z� � b2

�
C2�z� ÿC2�z�

�
ÿ F2�z� � F2�z� �14�

with

m1 � c244=c
1
44, m2 � k211=k

1
11, a1 � e115=k

1
11, a2 � e215=k

2
11,

b1 � e115=c
1
44, b2 � e215=c

2
44 �15�

where superscripts 1 and 2 of material constants (c44, e15, k11) and subscripts 1 and 2 of potential
functions (C, F) correspond to the inhomogeneity O1 and matrix O2, respectively. In this paper, the
conductive rigid line and the insulating one are considered, respectively. According to eqn (12), the
traction and normal component of electric displacement on G1 can be expressed as

C1�z� �C1�z� � 0 jzj � 1=R �16�

F1�z� � F1�z� � 0 jzj � 1=R �17�
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for the conductive rigid line;

C1�z� �C1�z� � 0 jzj � 1=R �18�

b1
�
C1�z� ÿC1�z�

�
ÿ F1�z� � F1�z� � 0 jzj � 1=R �19�

for the insulating rigid line. Since the solving process of these two problems is similar, we will con®ne
our attention only to the problem of the conductive rigid line. For the insulating rigid line, only the
corresponding results are given.

For the boundary conditions, we have in terms of eqns (8) and (11)

E 0
x ÿ iE 0

y � lim
jzj41

ÿ
Ex ÿ iEy

� � ÿ 2

Rck211
lim
jzj41

F 02�z� �20�

s0xz ÿ is0yz � lim
jzj41

ÿ
sxz ÿ isyz

� � 2

Rc
lim
jzj41

C 02�z� �
2a2
Rc

lim
jzj41

F 02�z� �21�

where �s0xz, s0yz� and �E 0
x, E

0
y� are the uniform shear stresses and electric ®elds at in®nity.

3. Solution to elastic and electric ®elds

In this section, the theorem of analytic continuation is used to solve the present problem. Following
eqns (20) and (21), we know that both C2�z� and F2�z� tend towards in®nity when jzj tends to in®nity.
Thus, we can set C2�z� � c�z�z and F2�z� � f�z�z. Since C2�z� and F2�z� are analytic in region O2, c�z�
and f�z� also are analytic in O2. Eliminating functions C2�z� and F2�z� from eqns (13) and (14), we haveÿ

1� m1
�
C1�z� ÿ

ÿ
1ÿ m1

�
C1�z� � �a1 � a2m2�F1�z� ÿ �a1 ÿ a2m2�F1�z� � 2C2�z� � 2a2F2�z�

ÿ
b1 � b2m1

�
C1�z� ÿ

ÿ
b1 ÿ b2m1

�
C1�z� ÿ

ÿ
1� m2

�
F1�z� �

ÿ
1ÿ m2

�
F1�z� � 2b2C2�z� ÿ 2F2�z� jzj � 1

�22�

Substituting C2�z� � c�z�z and F2�z� � f�z�z into eqn (22), we can obtain

ÿ
1� m1

�C1�z�
z
ÿ ÿ1ÿ m1

�C1�z�
z
� �a1 � a2m2 �

F1�z�
z
ÿ �a1 ÿ a2m2�

F1�z�
z
� 2c�z� � 2a2f�z�

ÿ
b1 � b2m1

�C1�z�
z
ÿ ÿb1 ÿ b2m1

�C1�z�
z
ÿ ÿ1� m2

�F1�z�
z
� ÿ1ÿ m2

�F1�z�
z
� 2b2c�z� ÿ 2f�z� jzj � 1

�23�
According to the Laurent theorem, functions C1�z� and F1�z�, analytic in the ring O1, can be

expressed as

C1�z� � C�1 �z� �Cÿ1 �z�, F1�z� � F�1 �z� � Fÿ1 �z� z 2 O1 �24�
where C�1 �z� and F�1 �z� are analytic in region jzj<1 and Cÿ1 �z� and Fÿ1 �z� are analytic in region

L. Wu, S. Du / International Journal of Solids and Structures 37 (2000) 1453±14691458



jzj > 1=R. Substituting eqn (24) into eqns (16), (17) and (23), we have

C�1 �z� �Cÿ1 �z� � ÿCÿ1 �z� ÿC�1 �z�

F�1 �z� � Fÿ1 �z� � ÿFÿ1 �z� ÿ F�1 �z� jzj � 1=R �25�

ÿ
1� m1

�C�1 �z�
z
ÿ ÿ1ÿ m1

�Cÿ1 �z�
z
� �a1 � a2m2�

F�1 �z�
z
ÿ �a1 ÿ a2m2�

Fÿ1 �z�
z

� ÿÿ1� m1
�Cÿ1 �z�

z
� ÿ1ÿ m1

�C�1 �z�
z
ÿ �a1 � a2m2 �

Fÿ1 �z�
z

��a1 ÿ a2m2�
F�1 �z�

z
� 2c�z� � 2a2f�z�

ÿ
b1 � b2m1

�C�1 �z�
z
ÿ ÿb1 ÿ b2m1

�Cÿ1 �z�
z
ÿ ÿ1� m2

�F�1 �z�
z
� ÿ1ÿ m2

�Fÿ1 �z�
z

� ÿÿb1 � b2m1
�Cÿ1 �z�

z
� ÿb1 ÿ b2m1

�C�1 �z�
z
� ÿ1� m2

�Fÿ1 �z�
z
ÿ ÿ1ÿ m2

�F�1 �z�
z

�2b2c�z� ÿ 2f�z� jzj � 1 �26�

Application of the theorem of analytic continuation to eqns (25) and (26) gives the possibility to
introduce the four analytic functions

F1�z� �

8>>>><>>>>:
C�1 �z� �Cÿ1

�
1

R2 �z

�
jzj< 1

R

ÿCÿ1 �z� ÿC�1

�
1

R2 �z

�
jzj > 1

R

�27�

F2�z� �

8>>>><>>>>:
F�1 �z� � Fÿ1

�
1

R2 �z

�
jzj< 1

R

ÿFÿ1 �z� ÿ F�1

�
1

R2 �z

�
jzj > 1

R

�28�
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F3�z� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ÿ
1� m1

�C�1 �z�
z
ÿ ÿ1ÿ m1

�Cÿ1 ÿ1=�z
�

z
� �a1 � a2m2�

F�1 �z�
z

ÿ�a1 ÿ a2m2�
Fÿ1
ÿ
1=�z

�
z

jzj<1

ÿÿ1� m1
�Cÿ1 �z�

z
� ÿ1ÿ m1

�C�1 ÿ1=�z
�

z
ÿ �a1 � a2m2�

Fÿ1 �z�
z

��a1 ÿ a2m2�
F�1
ÿ
1=�z

�
z

� 2c�z� � 2a2f�z� jzj > 1

�29�

F4�z� �

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ÿ
b1 � b2m1

�C�1 �z�
z
ÿ ÿb1 ÿ b2m1

�Cÿ1 ÿ1=�z
�

z
ÿ ÿ1� m2

�F�1 �z�
z

�ÿ1ÿ m2
�Fÿ1 ÿ1=�z

�
z

jzj<1

ÿÿb1 � b2m1
�Cÿ1 �z�

z
� ÿb1 ÿ b2m1

�C�1 ÿ1=�z
�

z
� ÿ1� m2

�Fÿ1 �z�
z

ÿÿ1ÿ m2
�F�1 ÿ1=�z

�
z

� 2b2c�z� ÿ 2f�z� jzj > 1

�30�

By the Liouville theorem, we have

F1�z� � C1, F2�z� � C2, F3�z� � C3, F4�z� � C4 �31�
where C1, C2, C3 and C4 are the complex constants which can be determined from eqns (29) and (30) by
the use of (20) and (21). Thus, we have

C�1 �z� �Cÿ1

�
1

R2 �z

�
� C1 jzj < 1

R
�32�

F�1 �z� � Fÿ1

�
1

R2 �z

�
� C2 jzj < 1

R
�33�

ÿ
1� m1

�
C�1 �z� ÿ

ÿ
1ÿ m1

�
Cÿ1

�
1

�z

�
� �a1 � a2m2�F�1 �z� ÿ �a1 ÿ a2m2�Fÿ1

�
1

�z

�
� C3z jzj<1 �34�

ÿ
b1 � b2m1

�
C�1 �z� ÿ

ÿ
b1 ÿ b2m1

�
Cÿ1

�
1

�z

�
ÿ ÿ1� m2

�
F�1 �z� �

ÿ
1ÿ m2

�
Fÿ1

�
1

�z

�
� C4z jzj<1 �35�

According to the re¯ection principle across circle jzj � 1=R and eqn (31), we ®nd that only when
constants C1 and C2 are zeroes or imaginary numbers, eqns (27) and (28) are compatible with eqns (32)
and (33), respectively. In Section 4, we will show that constants C1 and C2 really represent the rigid
body motion and equipotential ®eld which can be ignored. According to the principle of analytic
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continuation, eqns (32)±(35) can be solved in region jzj<1=R. Eliminating functions C�1 �z� and F�1 �z�
from eqns (32)±(35), we have after some manipulation266664

Cÿ1

�
1

R2 �z

�
Fÿ1

�
1

R2 �z

�
377775 � ÿ 1

A

"
A1 A2

A3 A4

#266664
Cÿ1

�
1

�z

�
Fÿ1

�
1

�z

�
377775ÿ 1

A

"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#"
C3

C4

#
z�

"
C1

C2

#

jzj< 1

R
�36�

where

A � ÿ1� m1
�ÿ
1� m2

�� �a1 � a2m2�
ÿ
b1 � b2m1

�
A1 �

ÿ
1ÿ m1

�ÿ
1� m2

�� �a1 � a2m2�
ÿ
b1 ÿ b2m1

�
A2 � 2m2�a1 ÿ a2 �

A3 � 2m1
ÿ
b2 ÿ b1

�
A4 �

ÿ
1� m1

�ÿ
1ÿ m2

�� �a1 ÿ a2m2�
ÿ
b1 � b2m1

� �37�

According to the re¯ection principle across circle jzj � 1=R, eqn (36) can further be written as"
Cÿ1 �z�
Fÿ1 �z�

#
�
"
C1

C2

#
ÿ 1

A

"
A1 A2

A3 A4

#
Cÿ1

ÿ
R2z

�
Fÿ1
ÿ
R2z

�" #
ÿ 1

A

"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#"
C3

C4

#
1

R2z
jzj> 1

R
�38�

where constants C1 and C2 are considered as zeroes or imaginary numbers.
Equation (38) is, in fact, the functional equation to determine the unknown functions Cÿ1 �z� and

Fÿ1 �z�. To solve these two functions, the sequential transformations �jzj > 1=R� can be adopted.
However, it is easily found that the solution to eqn (38) can be expressed as"

Cÿ1 �z�
Fÿ1 �z�

#
� ÿ

(
AR2I�

"
A1 A2

A3 A4

#)ÿ1"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#"
C3

C4

#
1

z

� A

(
AI�

"
A1 A2

A3 A4

#)ÿ1"
C1

C2

#
jzj > 1

R
�39�

where I denotes the second-order unit matrix. In the Appendix, we will prove that the matrices in eqn
(39) are inverse. Obviously, constants C1 and C2 represent the rigid body motion and the equipotential
®eld, respectively. They can be taken as zeroes. Substituting (39) into (34) and (35), we can obtain after
some manipulation
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"
C�1 �z�
F�1 �z�

#
� R2

(
AR2I�

"
A1 A2

A3 A4

#)ÿ1"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#"
C3

C4

#
z jzj<1 �40�

Subsequently, we determine the functions C1(z), F1(z), C2(z) and F2(z ). Substituting eqns (39) and
(40) into eqns (24) and (29)±(31) and according to the relations C2�z� � c�z�z and F2�z� � f�z�z; we can
obtain"

C1�z�
F1�z�

#
�
(
AR2I�

"
A1 A2

A3 A4

#)ÿ1"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#("
C3

C4

#
R2zÿ

"
C3

C4

#
1

z

)
1

R
< jzj< 1

�41�

"
m2C2�z�
m1F2�z�

#
�
(
R2m1m2Iÿ

1� R2

4
ÿ
1� a2b2

�"Aÿ A4 A2

A3 Aÿ A1

#)(
AR2I�

"
A1 A2

A3 A4

#)ÿ1

�
"

1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#"
C3

C4

#
1

z
� 1

2
ÿ
1� a2b2

�" �C3 � a2C4�m2ÿ
C3b2 ÿ C4

�
m1

#
z jzj > 1 �42�

For constants C3 and C4, we can obtain by substituting eqn (42) into eqns (20) and (21)"
C3

C4

#
� Rc

"
1 0

b2
ÿ
1� a2b2

�
k211

#24s0xz ÿ is0yz

E 0
x ÿ iE 0

y

35 �43�

Substituting (43) into (41) and (42), we determine the corresponding analytical functions
C1�z�, F1�z�, C2�z� and F2�z�. Furthermore, we can solve the elastic ®eld and electric ®eld from eqns (10)
and (11). To analyze the elastic ®eld and electric ®eld around the rigid line tip, we give the expressions
of the stress ®eld and electric displacement ®eld in O1 below. Substituting eqn (41) into eqns (10) and
(11), we can obtain after some manipulation"

Dx ÿ iDy

sxz ÿ isyz

#
� 2Rz2

c
ÿ
R2z2 ÿ 1

�" b1 ÿ1
1 a1

#(
AR2I�

"
A1 A2

A3 A4

#)ÿ1

�
"

1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#(
R2

"
C3

C4

#
�
"
C3

C4

#
1

z2

)
z 2 O1 �44�

To determine the elastic ®eld and electric ®eld in the z-plane, we use the inverse transformation
oÿ1�z� of (8). Since we are interested in the ®eld near the rigid line tip, it is convenient to choose a local
polar coordinate system �r, y� with the origin at x = c, i.e.,

z � c� reiy �45�

Substituting eqn (45) into the second relation of eqn (8) and assuming r� c yield
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Rz � 1�
�
2r

c

�1=2

eiy=2 � r

c
eiy �46�

where the terms of �r=c�3=2 and higher have been dropped. Thus, we can obtain the stress ®eld and
electric displacement ®eld around the rigid line tip by substitution of eqn (46) into (44) and the use of
eqn (43)"

Dx ÿ iDy

sxz ÿ isyz

#
� 2R2

�
c

2r

�1=2

eÿiy=2
"
b1 ÿ1
1 a1

#(
AR2I�

"
A1 A2

A3 A4

#)ÿ1

�
"

1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#"
1 0

b2
ÿ
1� a2b2

�
k211

#"
s0xz
E 0

x

#
z 2 O1 �47�

Equation (47) corresponds to the case of the conductive rigid line. For the insulating rigid line, a similar
derivation can be performed. The corresponding expression is written as"

Dx ÿ iDy

sxz ÿ isyz

#
� 1

Rc

�
c

2r

�1=2

eÿiy=2
"
b1 ÿ1
1 a1

#8<:R2

"
AR2I�

 
A1 A2

A 03 A 04

!#ÿ1"
B1

B 02

#
� 1

A

"
B1

B2

#

ÿ 1

A

 
A1 A2

A3 A4

!"
AR2I�

 
A1 A2

A 03 A 04

!#ÿ1"
B1

B
0
2

#9=; z 2 O1

�48�

where

A 03 � 2
h
b1 ÿ b2m1 � b1m2 ÿ b1m1m2 � a1b

2
1 ÿ a2b1b2m1m2

i
A 04 � ÿ

ÿ
1� m1

�ÿ
1ÿ m2

�ÿ a1b1 � a2b2m1m2 ÿ 4a2b1m2 � 4a1b1m2

2664
B1

B2

B
0
2

3775 �
2664

1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

b1 � 2b1m2 ÿ b2m1 1� m1 � 2a1b1 � 2a2b1m2

3775
"
C3

C 4

#
�49�

Below, we consider two speci®c cases. When the piezoelectric coupling e�ect is absent or e115 � 0 and
e215 � 0, we have in terms of eqns (15), (37) and (49)

a1 � a2 � b1 � b2 � 0, A1 �
ÿ
1ÿ m1

�ÿ
1� m2

�
, A2 � A3 � A 03 � 0

A4 � ÿA 04 �
ÿ
1� m1

�ÿ
1ÿ m2

�
, A � ÿ1� m1

�ÿ
1� m2

�
B1 �

ÿ
1� m2

�
C3, B2 � ÿB 02 � ÿ

ÿ
1� m1

�
C4 �50�

Substituting eqn (50) into eqns (47) and (48), we can get
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"
Dx ÿ iDy

sxz ÿ isyz

#
� 2R2

�
c

2r

�1=2

eÿiy=2

266664
k211E

0
xÿ

1� m2
�
R2 � 1ÿ m2

s0xzÿ
1� m1

�
R2 � 1ÿ m1

377775 �51�

for the conductive rigid line;

"
Dx ÿ iDy

sxz ÿ isyz

#
� 2R2

�
c

2r

�1=2

eÿiy=2

2666664
ÿik211E 0

yÿ
1� m2

�
R2 ÿ �1ÿ m2�
s0xzÿ

1� m1
�
R2 � 1ÿ m1

3777775 �52�

for the insulating rigid line. From (51) and (52), it can be found that the elastic ®eld at the conductive
rigid line tip agrees with one at the insulating rigid line tip.

When the inhomogeneity and matrix have the same elastic, piezoelectric and dielectric constants, we
have the following relations

m1 � m2 � 1; a1 � a2 � a, b1 � b2 � b,

A � 4�1� ab�, A1 � A2 � A3 � A 03 � A4 � A 04 � 0

B1 � 2C3 � 2aC4, B2 � 2bC3 ÿ 2C4, B
0
2 � 2bC3 � 2�1� 2ab�C4 �53�

Substituting (53) into (47) and (48), we have"
Dx ÿ iDy

sxz ÿ isyz

#
�
�
c

2r

�1=2

eÿiy=2
"
bs0xz � �1� ab�k11E 0

x

s0xz

#
�54�

for the conductive rigid line;

"
Dx ÿ iDy

sxz ÿ isyz

#
�
�
c

2r

�1=2

eÿiy=2

2664 ÿi
h
bs0yz � �1� ab�k11E 0

y

i
�1� ab�ÿs0xz � ak11E 0

x

�� ia
h
bs0yz � �1� ab�k11E 0

y

i
3775 �55�

for the insulating rigid line. It is easily seen that when e115 � 0 and e215 � 0, the corresponding elastic ®eld
agrees with the expressions of Wang et al. (1986). In the next section, we will derive the stress and
electric displacement singularity coe�cients and extension forces on the rigid line according to the
expressions obtained above.

4. Results and discussions

From eqns (47) and (48), it is clear that the stress ®eld and electric displacement ®eld have the
singularity at the rigid line tip. For the conductive rigid line, the singularity is caused only by the shear
stress s0xz and electric ®eld E 0

x. For the insulating rigid line, however, the shear stresses �s0xz, s0yz� and
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electric ®elds �E 0
x, E

0
y� have the e�ect on the singularity of the stress and electric displacement ®elds.

According to Pak (1990) and eqns (47) and (48), the stress and electric displacement singularity
coe�cients which are similarly de®ned in Wang et al. (1986) are written as"

K d
x ÿ iK d

y

K s
3x ÿ iK s

3y

#
� lim

r40
�2pr�1=2

"
Dx ÿ iDy

sxz ÿ isyz

#
y � 0

� 2R2�cp�1=2
"
b1 ÿ1
1 a1

#(
AR2I�

"
A1 A2

A3 A4

#)ÿ1"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#

�
"
1 0

b2
ÿ
1� a2b2

�
k211

#"
s0xz
E 0

x

#
�56�

for the conductive rigid line;"
K d

x ÿ iK d
y

K s
3x ÿ iK s

3y

#
� lim

r40
�2pr�1=2

"
Dx ÿ iDy

sxz ÿ isyz

#
y � 0

� �cp�
1=2

Rc

"
b1 ÿ1
1 a1

#8<:R2

"
AR2I�

 
A1 A2

A 03 A 04

!#ÿ1"
B1

B 02

#
� 1

A

"
B1

B2

#

ÿ 1

A

"
A1 A2

A3 A4

#"
AR2I �

 
A1 A2

A 03 A 04

!#ÿ1"
B1

B 02

#9=;
�57�

for the insulating rigid line. From eqn (56), it can be found that only the stress singularity coe�cient
K s

3x and electric displacement singularity coe�cient K d
x are nonzero constants when the rigid line is

conductive. However, when the rigid line is insulating, all the stress and electric displacement singularity
coe�cients are nonzero constants. It is easily veri®ed that when the inhomogeneity and matrix have the
same elastic, piezoelectric and dielectric constants and the piezoelectric coupling e�ect is absent, the
present elastic ®eld can degenerate into the result of Wang et al. (1986).

Subsequently, we determine the path-independent integral similar to the J integral in the elastic
problem or the extension force on the rigid line. According to Rice (1968, 1969) and Pak (1990), the
path-independent integral or the extension force on the rigid line can be expressed as

Jp �
�
G

�
Hnx ÿ T � @u

@x
� D � nEx

�
ds �58�

where G is a curve surrounding the rigid line tip (starting counterclockwise from the lower surface and
ending on the upper surface of the rigid line), H is the electric enthalpy density, T is the surface traction
vector on G, u is the displacement vector, D is the electric displacement vector, n is the outward unit
normal vector and s is the arc length. Since the integral is path-independent, we can take G as a circle
with its center at the rigid line tip. After some calculation, we obtain

(1) for the conductive rigid line,
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Jc � cp

2

h
c144k

1
11 �

ÿ
e115
�2iÿc144D2

c ÿ 2e115Dcsc ÿ k111s
2
c

� �59�

where"
Dc

sc

#
� 2R2

"
b1 ÿ1
1 a1

#(
AR2I�

"
A1 A2

A3 A4

#)ÿ1"
1� m2 a1 � a2m2

b1 � b2m1 ÿ1ÿ m1

#

�
"
1 0

b2
ÿ
1� a2b2

�
k211

#"
s0xz
E 0

x

#
�60�

(2) for the insulating rigid line,

Ji � cp

2
h
c144k

1
11 �

ÿ
e115
�2i�c144ÿD2

1 ÿD2
2

�ÿ 2e115�D1s1 ÿD2s2 � ÿ k111
ÿ
s21 ÿ s22

�� �61�

where"
D1 � iD2

s1 � is2

#
� 1

Rc

"
b1 ÿ1
1 a1

#8<:R2

"
AR2I�

 
A1 A2

A 03 A 04

!#ÿ1"
B1

B 02

#
� 1

A

"
B1

B2

#

ÿ 1

A

"
A1 A2

A3 A4

#"
AR2I�

 
A1 A2

A 03 A 04

!#ÿ1"
B1

B
0
2

#9=;
�62�

From eqns (59)±(62), it can be found that the extension force on the rigid line is less than or equal to
zero when the applied shear stress �s0xz, s0yz� and electric ®eld �E 0

x, E
0
y� satisfy some relations. This means

that the driving force on the rigid line favors a contraction rather than an extension in the length of the
rigid line.

When the inhomogeneity and matrix have the same elastic, piezoelectric and dielectric constants, eqns
(59) and (61) can be simpli®ed as

Jc � cp
2c44

h
ÿ ÿs0xz�2��c44k11 � �e15�2�ÿE 0

x

�2i �63�

for the conductive rigid line;

Ji � ÿ cp
2c44k11

�
c44

h
bs0yz � �1� ab�k11E 0

y

i2
� k11�1� ab�ÿs0xz � ak11E 0

x

�2� �64�

for the insulating rigid line. Evidently, when the applied shear stress s0xz and electric ®eld E 0
x satisfy the

following relation 
s0xz
E 0

x

!2

ec44k11 � �e15 �2 �65�

the extension force Jc on the conductive rigid line is less than or equal to zero. This implies that the
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driving force on the conductive rigid line favors a contraction in the length of the segment. This
phenomenon can be found in the elastic problem (see Wang et al., 1986). For the insulating rigid line,
the corresponding driving force is always negative. This means that there is a contraction near the
insulating rigid line.

When the piezoelectric coupling e�ect is ignored, we have in terms of eqns (50) and (59)±(62)

Jc � 2R4cp
c144k

1
11

8<:c144
ÿ
k211E

0
x

�2�ÿ
1� m2

�
R2 � 1ÿ m2

�2 ÿ k111

ÿ
s0xz
�2�ÿ

1� m1
�
R2 � 1ÿ m1

�2
9=; �66�

for the conductive rigid line;

Ji � ÿ2R
4cp

c144k
1
11

8><>:c144

�
k211E

0
y

�2
�ÿ
1� m2

�
R2 ÿ 1� m2

�2 � k111

ÿ
s0xz
�2�ÿ

1� m1
�
R2 � 1ÿ m1

�2
9>=>; �67�

for the insulating rigid line. From eqn (66), we can ®nd that the applied shear stress s0xz has the
decreasing e�ect on the extension force Jc, whereas the electric ®eld E 0

x has the increasing e�ect on it.
This conclusion also is correct for eqn (63). Eqn (67) has an identical meaning with eqn (64) since Ji is
negative. From eqns (64) and (67), it can be found that the present result can degenerate into one of Wu
et al. (1998) when e115 � e215 � 0, E 0

y � 0.
It should be shown that the individual contributions of mechanical and electric loadings need to be

considered, respectively, since it is important to understand the character of piezoelectric media. For
eqns (63) and (64), when the applied electric ®elds are equal to zeros, we can ®nd that the extension
forces Jc and Ji on the rigid line are negative and Jc which only depends on the shear modulus can
degenerate into the result of Wang et al. (1986). However, from eqn (64), it can be seen that Ji is also
related to piezoelectric and dielectric constants, except for the shear modulus. This shows that the path-
independent integrals represent the di�erent characters for the conductive and insulating rigid lines.

For eqns (66) and (67), it can be seen that when the piezoelectric coupling and applied electric ®elds
are absent, these two equations become consistent. Here, the extension force on the rigid line only is
related to shear moduli and can degenerate into the result of Wu et al. (1998).

5. Conclusions

1. The technique of conformal mapping and the theorem of analytic continuation are used to investigate
the elastic ®eld and electric ®eld of a rigid line embedded in a confocal elliptic piezoelectric
inhomogeneity in an in®nite piezoelectric medium. The analytical solution to the elastic ®eld and
electric ®eld is obtained.

2. The singularity behaviors of the stress ®eld and electric displacement ®eld at the rigid line tip are
investigated. Some degenerate cases are taken into account. From eqns (54) and (55), it can be seen
that only the applied shear stress s0xz and electric ®eld E 0

x have some in¯uence upon the singularity of
the shear stress and electric displacement ®elds when the rigid line is conductive. For the insulating
rigid line, the shear stresses �s0xz, s0yz� and electric ®elds �E 0

x, E
0
y� have the e�ect on the singularity of

the shear stress and electric displacement ®elds.
3. The stress and electric displacement singularity coe�cients are derived. Two speci®c examples are

provided. From eqns (56) and (57), it can be found that the stress and electric displacement
singularity coe�cients depend on the material constants, the geometric parameters of the elliptic
inhomogeneity and the applied shear stress and electric ®elds at in®nity.
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4. The path-independent integral or the extension force on the rigid line is derived. From eqns (59)±(67),
we can ®nd that the extension force on the rigid line is less than or equal to zero when the applied
shear stress and electric ®elds satisfy some conditions. This means that the driving force on the rigid
line sometimes favors a contraction in the length of the segment.
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Appendix

It is well known that when the determinant of a second-order matrix is nonzero, this matrix is inverse.
According to eqns (15), (37) and (39), we have after some manipulation����Aÿ A1 ÿA2

ÿA3 Aÿ A4

���� � 4m1m2
ÿ
1� a2b2

�"ÿ
1� m1

�ÿ
1� m2

�� ÿe115 � e215
�2

c144k
1
11

#
�A1�

Since c i44 and ki11�i � 1, 2� are positive real numbers, the above determinant also is positive according to
eqn (15). Thus, we prove that the second inverse matrix on the right side of eqn (39) exists.

Subsequently, we will prove that the ®rst matrix on the right side of eqn (39) is inverse. Its
determinant can be expressed as����R2Aÿ A1 ÿA2

ÿA3 R2Aÿ A4

���� � �R2A�2ÿ�A1 � A4�R2A� A1A4 ÿ A2A3 �A2�

The discriminant of this quadratic form can be written in terms of eqn (37) as

D � 4�m2 ÿ m1�2�16m1m2�a1 ÿ a2�
ÿ
b2 ÿ b1

� �A3�

If D < 0, it is clear that the right side of eqn (A2) is positive. If De0, we have

a1b2m1�m1 � m2�e
ÿ
a1b1 � a2b2

�
m1m2 ÿ �

m2 ÿ m1�2
4

�A4�

According to eqns (9), (15), (A1) and (A4) and using the relation a1b2m1 � a2b1m2, we can obtain����R2Aÿ A1 ÿA2

ÿA3 R2Aÿ A4

����
� �R2 ÿ 1�2A2 � 2�R2 ÿ 1�A

�
Aÿ A1 � A4

2

�
� �Aÿ A1��Aÿ A4� ÿ A2A3

> 2�R2 ÿ 1�A�m1 � m2 � 2m1m2 � 2a1b2m1 � 2a2b2m1m2
�
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> 2�R2 ÿ 1�A
"
m1 � m2 � 2m1m2 ÿ �

m2 ÿ m1�2
2�m1 � m2 �

#

> 0 �A5�
Thus, we also prove that the ®rst inverse matrix on the right side of eqn (39) exists.
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